一、拉格朗日
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
二、拉格朗日中值定理
把拉格朗日定理移項(xiàng),得f(x)-[f(b)-f(a)]/(b-a)*(x-a)=0,令u(x)等于等號(hào)左邊的函數(shù)。
于是有u(a)=u(b)=f(a),這就滿足了羅爾定理。
羅爾定理是:在[a,b]上滿足u(a)=u(b)時(shí),一定存在m屬于(a,b)使u(x)的導(dǎo)數(shù)等于0。
這些條件現(xiàn)在都滿足了,而且對(duì)u(x)求導(dǎo)后,經(jīng)過簡(jiǎn)單移項(xiàng),立刻就可得到拉格朗日中值定理的式子。羅爾定理是拉格朗日中值定理在f(a)=f(b)時(shí)的特殊情況。
三、拉格朗日方程
拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。
四、拉格朗日下載
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)矢量的系數(shù)。
引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
五、拉格朗日余項(xiàng)
1.帶皮亞諾余項(xiàng)泰勒公式的不足。
2.帶拉格朗日余項(xiàng)的泰勒公式。
3.對(duì)(拉格朗日余項(xiàng))泰勒公式的一些說明。
4.誤差分析的一般結(jié)論(實(shí)際應(yīng)用時(shí)須具體問題具體分析)。
5.附錄:泰勒中值定理2的證明。
擴(kuò)展資料:
高等數(shù)學(xué)指相對(duì)于初等數(shù)學(xué)而言,數(shù)學(xué)的對(duì)象及方法較為繁雜的一部分。廣義地說,初等數(shù)學(xué)之外的數(shù)學(xué)都是高等數(shù)學(xué),也有將中學(xué)較深入的代數(shù)、幾何以及簡(jiǎn)單的集合論初步、邏輯初步稱為中等數(shù)學(xué)的,將其作為中小學(xué)階段的初等數(shù)學(xué)與大學(xué)階段的高等數(shù)學(xué)的過渡。
六、拉格朗日點(diǎn)
從天體物理學(xué)的角度看,拉格朗日點(diǎn)被發(fā)現(xiàn)后,天文學(xué)家認(rèn)為在一個(gè)恒星系統(tǒng)中的5個(gè)拉格朗日點(diǎn)上,應(yīng)該存在大量的天體。按照這個(gè)思路,天文學(xué)家已經(jīng)在太陽系的多個(gè)行星系統(tǒng)中發(fā)現(xiàn)了大量此前未被發(fā)現(xiàn)或者觀測(cè)到的小行星。比如,在木星的L4和L5兩個(gè)拉格朗日點(diǎn)上,就發(fā)現(xiàn)了大量的特洛伊小行星,數(shù)量超過2000個(gè)。
從航空航天的角度看,拉格朗日點(diǎn)發(fā)現(xiàn),極大地推動(dòng)了現(xiàn)代航天科學(xué)的進(jìn)步。由于位于拉格朗日點(diǎn)的航天器只需要很少的燃料就可以維持軌道穩(wěn)定,因此,這5個(gè)拉格朗日點(diǎn)成為航天器的首選目的地,并且,5個(gè)拉格朗日點(diǎn)的不同位置,對(duì)于不同的航天器來說,也具有不同的優(yōu)勢(shì)。
七、拉格朗日乘數(shù)法
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。
這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。八、拉格朗日定理
拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。
九、拉格朗日插值法
拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的 多元函數(shù)的 極值的方法。
這種方法將一個(gè)有n 個(gè)變量與k 個(gè) 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。
這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。
此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。