色欲香天天综合网站-狼狼综合久久久久综合网-丰满少妇人妻久久久久久-97夜夜澡人人爽人人模人人喊

返回首頁

拉格朗日插值豆丁(拉格朗日 插值)

來源:www.cy2002.cn???時(shí)間:2023-05-11 06:07???點(diǎn)擊:110??編輯:admin 手機(jī)版

一、什么是拉格朗日插值法?

在數(shù)值分析中,拉格朗日插值法是以法國十八世紀(jì)數(shù)學(xué)家約瑟夫·拉格朗日命名的一種多項(xiàng)式插值方法。

許多實(shí)際問題中都用函數(shù)來表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過實(shí)驗(yàn)和觀測來了解。如對實(shí)踐中的某個(gè)物理量進(jìn)行觀測,在若干個(gè)不同的地方得到相應(yīng)的觀測值,拉格朗日插值法可以找到一個(gè)多項(xiàng)式,其恰好在各個(gè)觀測的點(diǎn)取到觀測到的值。

二、5?什么是拉格朗日插值公式?

構(gòu)造一組插值基函數(shù).”就是構(gòu)造一個(gè)函數(shù),這個(gè)函數(shù)在其中一點(diǎn)的值為1,其它點(diǎn)的值為0。這樣的話把n個(gè)這樣的函數(shù)加權(quán)加起來得到的函數(shù)就是在每個(gè)點(diǎn)上的值都是需要的了

三、拉格朗日插值法公式怎么記?

線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1 其幾何解釋就是一條直線,通過已知點(diǎn)A (x0, y0),B(x1, y1)

四、2點(diǎn)的拉格朗日插值公式?

拉格朗日插值公式

約瑟夫·拉格朗日發(fā)現(xiàn)的公式

拉格朗日插值公式線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式P1(x) = ax + b使它滿足條件P1 (x0) = y0 P1 (x1) = y1其幾何解釋就是一條直線,通過已知點(diǎn)A (x0, y0),B(x1, y1)。

五、為什么估計(jì)舍入誤差要用拉格朗日插值?

拉格朗日插值法與牛頓插值法都是二種常用的簡便的插值法。但牛頓法插值法則更為簡便,與拉格朗日插值多項(xiàng)式相比較,它不僅克服了“增加一個(gè)節(jié)點(diǎn)時(shí)整個(gè)計(jì)算工作必須重新開始”的缺點(diǎn),而且可以節(jié)省乘、除法運(yùn)算次數(shù)。

同時(shí),在牛頓插值多項(xiàng)式中用到的差分與差商等概念,又與數(shù)值計(jì)算的其他方面有著密切的關(guān)系。所以??!

從運(yùn)算的角度來說牛頓插值法精確度高從數(shù)學(xué)理論上來說的話,我傾向于拉格朗日大神??!

話說拉格朗日當(dāng)初不搞天文,不搞物理,專弄數(shù)學(xué),估計(jì)是數(shù)學(xué)歷史上最偉大的數(shù)學(xué)家了,沒有之一。

六、簡述拉格朗日插值法代碼實(shí)現(xiàn)的步驟?

一、拉格朗日插值法

是以法國十八世紀(jì)數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名的一種多項(xiàng)式插值方法。許多實(shí)際問題中都用函數(shù)來表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過實(shí)驗(yàn)和觀測來了解。如對實(shí)踐中的某個(gè)物理量進(jìn)行觀測,在若干個(gè)不同的地方得到相應(yīng)的觀測值,拉格朗日插值法可以找到一個(gè)多項(xiàng)式,其恰好在各個(gè)觀測的點(diǎn)取到觀測到的值。這樣的多項(xiàng)式稱為拉格朗日(插值)多項(xiàng)式。

二、Lagrange基本公式:

拉格朗日插值公式,設(shè),y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式計(jì)算時(shí),其x取值可以不等間隔。由于y=f(x)所描述的曲線通過所有取值點(diǎn),因此,對有噪聲的數(shù)據(jù),此方法不可取。

一般來說,對于次數(shù)較高的插值多項(xiàng)式,在插值區(qū)間的中間,插值多項(xiàng)式能較好地逼近函數(shù)y=f(x),但在遠(yuǎn)離中間部分時(shí),插值多項(xiàng)式與y=f(x)的差異就比較大,越靠近端點(diǎn),其逼近效果就越差。

三、C++實(shí)現(xiàn)

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作為臨時(shí)變量,記錄拉格朗日插值多項(xiàng)式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

七、拉格朗日插值恒等式是高等函數(shù)嗎?

不是,是一種分式函數(shù),算初等函數(shù)。但是該內(nèi)容出現(xiàn)在數(shù)學(xué)分析中。

八、拉格朗日乘數(shù)法求最值?

構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)

對函數(shù)求偏導(dǎo)并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時(shí)a^2+b^2+c^2=3

所以

m=根號17/2根號3

a=-4根號3/根號17

b=-根號3/根號17

4a+b=-根號51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點(diǎn)的函數(shù)值和不可導(dǎo)點(diǎn)的函數(shù)值還有端點(diǎn)函數(shù)值進(jìn)行比較

3、書上說是可能的極值點(diǎn),這個(gè)沒錯(cuò),比如f(x)=x^3,在x=0點(diǎn)導(dǎo)數(shù)確實(shí)為0,但是不是極值點(diǎn),所以是可能的極值點(diǎn),到底是不是要帶入原函數(shù)再看

九、三次拉格朗日多項(xiàng)式插值法公式?

拉格朗日插值公式(外文名Lagrange interpolation formula)指的是在節(jié)點(diǎn)上給出節(jié)點(diǎn)基函數(shù),然后做基函數(shù)的線性組合,組合系數(shù)為節(jié)點(diǎn)函數(shù)值的一種插值多項(xiàng)式。

線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1

其幾何解釋就是一條直線,通過已知點(diǎn)A (x0, y0),B(x1, y1)。

線性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線去代替曲線,因而一般要求[x0, x1]比較小,且f(x)在[x0, x1]上變化比較平穩(wěn),否則線性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡單的曲線去近似地代替復(fù)雜的曲線,最簡單的曲線是二次曲線,用二次曲線去逼近復(fù)雜曲線的情形。[1]

十、拉格朗日條件?

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得

顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

頂一下
(0)
0%
踩一下
(0)
0%
色婷婷久久久swag精品| 亚洲人jizz日本人| 日木av无码专区亚洲av毛片| 西西人体44www大胆无码| 一卡二卡三卡视频| 欧美黑人激情性久久| 精品露脸国产偷人在视频| 性xxxxx欧美极品少妇| 国产精品久久久久久一区二区三区| 天堂√最新版中文在线地址| 18禁美女裸体免费网站| 强开小婷嫩苞又嫩又紧视频| 久久99国产综合精品| 日日噜噜夜夜狠狠va视频v| 无码国内精品人妻少妇蜜桃视频| 亚洲www啪成人一区二区| 少妇精品久久久一区二区三区| 肥老熟妇伦子伦456视频| 亚洲色成人网站www永久四虎| 欧美丰满熟妇乱xxxxx网站| 久久免费看黄a级毛片| 四虎国产精品免费久久| 女人18毛片a级毛片| 亚洲av成人一区二区三区观看| 强奷乱码中文字幕熟女导航| 无码人妻一区二区三区在线视频| 亚洲一区二区三区日本久久九| 乱码丰满人妻一二三区| 日本少妇春药特殊按摩3| 久久精品丝袜高跟鞋| 最近最好的中文字幕2019免费| 亚洲综合无码无在线观看| 亚洲色大网站www永久网站| 天堂а√在线中文在线最新版| 无码国产69精品久久久久同性| 成人免费区一区二区三区| 88久久精品无码一区二区毛片| 日本边添边摸边做边爱的网站| 亚洲最大天堂无码精品区| 国产大片黄在线观看私人影院| 欧洲无码一区二区三区在线观看|