色欲香天天综合网站-狼狼综合久久久久综合网-丰满少妇人妻久久久久久-97夜夜澡人人爽人人模人人喊

返回首頁

拉格朗日乘數(shù)發(fā)造價問題 拉格朗日乘數(shù)法有什么用

來源:www.cy2002.cn???時間:2023-06-19 01:57???點擊:185??編輯:admin 手機(jī)版

一、拉格朗日乘數(shù)法難不難?

不難,都是套路,掌握套路就好了

二、拉格朗日乘數(shù)法公式?

拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。

有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。

上述問題可以通過消元來解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數(shù)法,過程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對x的偏導(dǎo)=0

f對y的偏導(dǎo)=0

f對k的偏導(dǎo)=0

解上述三個方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。

三、拉格朗日乘數(shù)法原理?

拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的 多元函數(shù)的 極值的方法。

這種方法將一個有n 個變量與k 個 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。

這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。

此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

四、拉格朗日乘數(shù)法適用條件?

拉格郎日乘數(shù)法的適用條件是乘數(shù)不等于0。

求最值(最值是某個區(qū)間的最大或最小,注意最大/最小可能有同值的多個,所以也不唯一哈,極值是一個小范圍,很小很小,內(nèi)的最值).因為最值總是發(fā)生在極值點+區(qū)間邊界點+間斷點處,所以可以用拉朗乘數(shù)求出極值,用邊界和間斷點極限求出可疑極值,比較他們的大小,就可以找到區(qū)間內(nèi)的最值了.特別地,若函數(shù)在區(qū)間內(nèi)用拉朗求出僅一個極值,切很易判定沒有其他可疑極值點,就可以直接判斷那個極值是最值;或者可以判斷函數(shù)在所給區(qū)間內(nèi)單調(diào)(比如exp(x^2+y^2)在(x>0,y>0)時單調(diào)遞增),就不用求極值(因為沒有),直接求區(qū)間邊界(或者間斷點,有間斷點也可以單調(diào)的)作為最值。

五、什么是拉格朗日乘數(shù)法?

拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的 多元函數(shù)的 極值的方法。

這種方法將一個有n 個變量與k 個 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值

六、拉格朗日乘數(shù)法中的乘數(shù)λ能為零?

拉格朗日乘數(shù)的數(shù)值是按照實際演算獲取的,不排除為0的可能性。根據(jù)推導(dǎo)過程可知,λ是不可以等于0的。

1.如果等于0,f對x求導(dǎo),就是原函數(shù)對x求導(dǎo)

2.f對y求導(dǎo),就是原函數(shù)對y求導(dǎo)

3.上面兩個式子一般是不可能解出來的 由拉格朗日乘數(shù)法的推導(dǎo)過程可以看出,λ≠0,否則駐點(x0,y0)滿足的式子就變成了

4.f對x的偏導(dǎo)=0

5.f對y的偏導(dǎo)=0

6.f對λ的偏導(dǎo)=0

7.前面兩個式子一般是不成立的。

8.求z=xy^2在x^2+y^2=1下的極值?一般應(yīng)該是求最大值、最小值!

9.一種方法是化成一元函數(shù)的極值z=x(1-x^2),-1≤x≤1.

10.用拉格朗日乘數(shù)法的話,設(shè)L(x,y)=xy^2+λ(x^2+y^2-1),解方程組

11.y^2+2λx=0

12.2xy+2λy=0

13.x^2+y^2=1

14.前兩個方程求出x=-λ,y^2=2λ^2,代入第三個式子得λ=±1/√3,所以x=±1/√3,y=±√(2/3),比較4個駐點處的函數(shù)值可得最大值和最小值

七、拉格朗日乘數(shù)法求最值?

構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)

對函數(shù)求偏導(dǎo)并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時a^2+b^2+c^2=3

所以

m=根號17/2根號3

a=-4根號3/根號17

b=-根號3/根號17

4a+b=-根號51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點的函數(shù)值和不可導(dǎo)點的函數(shù)值還有端點函數(shù)值進(jìn)行比較

3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導(dǎo)數(shù)確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數(shù)再看

八、用拉格朗日乘數(shù)法求極值:)?

  在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數(shù)的極值的方法。

這種方法將一個有n 個變量與k 個約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

九、拉格朗日乘數(shù)法對x求導(dǎo)

在這里xyz都是自變量,

V=xyz就是一個多元函數(shù),并不是方程,

x,y,z的變化都會使V發(fā)生變化

沒錯,xyz滿足了條件

φ(x,y,z)=2xy+2yz+2xz-a^2=0

你當(dāng)然可以把其中一個用另外兩個來表示,

再帶回到V=xyz中,

然后只求偏導(dǎo)兩次就可以了

十、解拉格朗日乘數(shù)法的技巧?

拉格朗日乘數(shù)法解法:在數(shù)學(xué)最優(yōu)問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數(shù)的極值的方法。

這種方法將一個有n個變量與k個約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n+k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

頂一下
(0)
0%
踩一下
(0)
0%
国产xxxxx在线观看| 免费大黄网站| 中国无码人妻丰满熟妇啪啪软件| 欧洲熟妇色xxxx欧美老妇软件| 韩国青草无码自慰直播专区| 免费人成视频在线播放| 欧美超大胆裸体xx视频| 日本xxxx色视频在线观看| 亚洲国产中文字幕在线视频综合| 无码国产精品久久一区免费| 亚洲国产成人精品无码区二本| 东北妇女xx做爰视频| 国产成人av一区二区三区在线观看| 亚洲一区二区三区香蕉| 人人人妻人人澡人人爽欧美一区| 97无码人妻福利免费公开在线视频| 国产又粗又猛又爽又黄的视频在线观看动漫| 久久久久国产精品熟女影院| 毛片a久久99亚洲欧美毛片| 国产成人午夜精华液| 少妇极品熟妇人妻无码| 久久夜色精品国产亚洲av| 国产精品亚洲欧美大片在线看| 国产一区二区精品久久岳| 亚洲综合无码无在线观看| 欧洲vat一区二区三区| 欧美日韩久久久精品a片| 国产成 人 综合 亚洲网站| 国产肥熟女视频一区二区三区| 国产真实乱对白精彩| 国产无套粉嫩白浆在线观看| 亚洲av成人片色在线观看高潮| 久久久久亚洲av无码专区喷水| 日韩好片一区二区在线看| 少妇人妻诗雨系列无删减| 日韩免费无码一区二区视频| 少妇人妻陈艳和黑人教练| 中文无码av一区二区三区| 麻豆国产av超爽剧情系列| 久久精品国产亚洲av水果派| 国产免费久久精品国产传媒|