色欲香天天综合网站-狼狼综合久久久久综合网-丰满少妇人妻久久久久久-97夜夜澡人人爽人人模人人喊

返回首頁

拉格朗日對偶(拉格朗日對偶問題舉例)

來源:www.cy2002.cn???時間:2022-12-29 11:11???點擊:220??編輯:admin 手機版

1. 拉格朗日對偶問題舉例

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開區(qū)間(a,b)內(nèi)可導,則在(a,b)內(nèi)至少存在一點ξ,使得

顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

2. 拉格朗日對偶方法

拉格朗日定理存在于多個學科領(lǐng)域中,分別為:流體力學中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。

正壓理想流體在質(zhì)量力有勢的情況下,如果初始時刻某部分流體內(nèi)無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。以某一起始時刻每個質(zhì)點的坐標位置(a、b、c),作為該質(zhì)點的標志。 如果在一個正整數(shù)的因數(shù)分解式中,沒有一個數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個平方數(shù)之和。

3. 支持向量機拉格朗日對偶問題

拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。

是研究流體各個質(zhì)點的運動參數(shù)(位置坐標、速度、加速度等)隨時間的變化規(guī)律。綜合所有流體質(zhì)點運動參數(shù)的變化,便得到了整個流體的運動規(guī)律。

在研究波動問題時,常用拉格朗日法

4. 拉格朗日對偶問題一定是凸優(yōu)化

拉格朗日出生在意大利的都靈。由于是長子,父親一心想讓他學習法律,然而,拉格朗日對法律毫無興趣,偏偏喜愛上文學。

直到16歲時,拉格朗日仍十分偏愛文學,對數(shù)學尚未產(chǎn)生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優(yōu)點》,使他對牛頓產(chǎn)生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數(shù)學家。

在進入都靈皇家炮兵學院學習后,拉格朗日開始有計劃地自學數(shù)學。由于勤奮刻苦,他的進步很快,尚未畢業(yè)就擔任了該校的數(shù)學教學工作。20歲時就被正式聘任為該校的數(shù)學副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對此給予了極高的評價。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數(shù)學的一個新的分支——變分法。

1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學院的通訊院士。接著,他又當選為該院的外國院士。

1762年,法國科學院懸賞征解有關(guān)月球何以自轉(zhuǎn),以及自轉(zhuǎn)時總是以同一面對著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學院的大獎。拉格朗日的名字因此傳遍了整個歐洲,引起世人的矚目。兩年之后,法國科學院又提出了木星的4個衛(wèi)星和太陽之間的攝動問題的所謂“六體問題”。面對這一難題,拉格朗日毫不畏懼,經(jīng)過數(shù)個不眠之夜,他終于用近似解法找到了答案,從而再度獲獎。這次獲獎,使他贏得了世界性的聲譽。

1766年,拉格朗日接替歐拉擔任柏林科學院物理數(shù)學所所長。在擔任所長的20年中,拉格朗日發(fā)表了許多論文,并多次獲得法國科學院的大獎:1722年,其論文《論三體問題》獲獎;1773年,其論文《論月球的長期方程》再次獲獎;1779年,拉格朗日又因論文《由行星活動的試驗來研究彗星的攝動理論》而獲得雙倍獎金。

在柏林科學院工作期間,拉格朗日對代數(shù)、數(shù)論、微分方程、變分法和力學等方面進行了廣泛而深入的研究。他最有價值的貢獻之一是在方程論方面。他的“用代數(shù)運算解一般n次方程(n4)是不能的”結(jié)論,可以說是伽羅華建立群論的基礎(chǔ)。

5. 拉格朗日典型例題

設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對x和y的一階偏導數(shù),令它們等于零,并與附加條件聯(lián)立,即

L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,

L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,

φ(x,y)=0

由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。

6. 拉格朗日乘數(shù)法對偶問題

拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。

有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。

上述問題可以通過消元來解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數(shù)法,過程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對x的偏導=0

f對y的偏導=0

f對k的偏導=0

解上述三個方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡單地舉一例,更復雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學教材。

7. 拉格朗日函數(shù)對偶問題

在分析力學里,一個動力系統(tǒng)的 拉格朗日函數(shù),是描述整個物理系統(tǒng)的動力狀態(tài)的函數(shù),對于一般經(jīng)典物理系統(tǒng),通常定義為動能減去勢能,以方程表示為

拉格朗日函數(shù)

拉格朗日函數(shù)

拉格朗日函數(shù)

拉格朗日函數(shù)

其中, 為拉格朗日量, 為動能, 為勢能。

在分析力學里,假設(shè)已知一個系統(tǒng)的拉格朗日函數(shù),則可以將拉格朗日量直接代入拉格朗日方程,稍加運算,即可求得此系統(tǒng)的運動方程。

8. 拉格朗日對偶問題和對偶問題

1.個人逐漸掌握了私有財產(chǎn),便不再需要借助氏族的力量來群婚了,這是族外群婚難以維持的內(nèi)在原因。

2.對偶婚比族外群婚先進,其先進性在于:對偶婚做為一種生產(chǎn)關(guān)系,更有利于強化私有制進而促進生產(chǎn)力的發(fā)展。

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
久久人妻av中文字幕| 男女作爱免费网站| 97亚洲色欲色欲综合网| 亚洲av无码一区二区三区天堂| 人妻被按摩到潮喷中文字幕| 中文字幕日韩精品有码视频| 熟女少妇在线视频播放| 午夜亚洲av永久无码精品| 精品人妻系列无码人妻在线不卡| 亚洲精品国产第一综合99久久| 日韩一区国产二区欧美三区| 天天爽夜夜爽夜夜爽| 日本一卡2卡3卡四卡精品网站| 无码人妻精品一区二区三区下载| 久久国产精久久精产国| 欧美人与物videos另类| 国产精品久久久天天影视| 亚洲精华国产精华精华液网站| 人人妻人人爽人人做夜欢视频| 日本乱偷互换人妻中文字幕| 久久精品一区二区三区av| 国产精品成人va在线观看| 无码熟妇αⅴ人妻又粗又大| 国内精品久久久久久久97牛牛| 免费看国产曰批40分钟| 成人无码区免费a片www| 一区二区传媒有限公司| 欧美做爰一区二区三区| 国产精品爆乳奶水无码视频| 欧美老妇疯狂xxxxbbbb| 久久精品国产只有精品66| y111111少妇影院无码| 无码人妻av免费一区二区三区| 亚洲色爱图小说专区| 久久亚洲中文字幕精品一区| 人人妻人人超人人| 日韩人妻无码一区二区三区久久99| 自拍偷自拍亚洲精品被多人伦好爽| 久久久久欧美精品| 久久久亚洲精华液精华液精华液| 无码人妻视频一区二区三区|