1. 拉格朗日極值法例題
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)矢量的系數(shù)。
引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
2. 拉格朗日條件極值例題
判斷是極大值還是極小值點(diǎn),一個(gè)初步的方法是依靠經(jīng)驗(yàn)和對問題的認(rèn)識。當(dāng)不能作出有效判斷時(shí),可以求取函數(shù)的二階導(dǎo)數(shù)進(jìn)行判斷,其實(shí)一個(gè)簡單的方法是比較該極值點(diǎn)的函數(shù)值與相鄰點(diǎn)的函數(shù)來作出判斷。
至于存在不能化為無條件極值的問題,一般是先不管約束條件建立求解極值點(diǎn)的方程,然后再限制在約束條件下求出最后解答,具體的過程,建議參看變分原理等數(shù)學(xué)或力學(xué)書籍,如《計(jì)算動力學(xué)》中就有提到,不過這本書不是純粹的數(shù)學(xué)推演。
3. 拉格朗日乘數(shù)法條件極值例題
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。
這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。4. 拉格朗日條件極值法
拉格郎日乘數(shù)法的適用條件是乘數(shù)不等于0。
求最值(最值是某個(gè)區(qū)間的最大或最小,注意最大/最小可能有同值的多個(gè),所以也不唯一哈,極值是一個(gè)小范圍,很小很小,內(nèi)的最值).因?yàn)樽钪悼偸前l(fā)生在極值點(diǎn)+區(qū)間邊界點(diǎn)+間斷點(diǎn)處,所以可以用拉朗乘數(shù)求出極值,用邊界和間斷點(diǎn)極限求出可疑極值,比較他們的大小,就可以找到區(qū)間內(nèi)的最值了.特別地,若函數(shù)在區(qū)間內(nèi)用拉朗求出僅一個(gè)極值,切很易判定沒有其他可疑極值點(diǎn),就可以直接判斷那個(gè)極值是最值;或者可以判斷函數(shù)在所給區(qū)間內(nèi)單調(diào)(比如exp(x^2+y^2)在(x>0,y>0)時(shí)單調(diào)遞增),就不用求極值(因?yàn)闆]有),直接求區(qū)間邊界(或者間斷點(diǎn),有間斷點(diǎn)也可以單調(diào)的)作為最值。
5. 拉格朗日極值法約束條件是不等式
兩個(gè)方法,第一,先不管不等式條件,求出普通極值的數(shù)個(gè)可行解,然后帶入不等式,符合的為正解 第二,用kkt條件帶入
6. 拉格朗日中值定理求極值的方法
一、直接法。先判斷函數(shù)的單調(diào)性,若函數(shù)在定義域內(nèi)為單調(diào)函數(shù),則最大值為極大值,最小值為極小值
二、導(dǎo)數(shù)法(1)、求導(dǎo)數(shù)f'(x);(2)、求方程f'(x)=0的根;(3)、檢查f'(x)在方程的左右的值的符號,如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正那么f(x)在這個(gè)根處取得極小值。
7. 拉格朗日極值法怎么解
拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。
有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。
上述問題可以通過消元來解決,例如消去x,則變成
z=(y-1)^2+y^2
則容易求解。
但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時(shí)消元將會很繁,則須用拉格朗日乘數(shù)法,過程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f對x的偏導(dǎo)=0
f對y的偏導(dǎo)=0
f對k的偏導(dǎo)=0
解上述三個(gè)方程,即可得到可讓z取到極小值的x,y值。
拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。
8. 拉格朗日求極值法
構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)
對函數(shù)求偏導(dǎo)并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同時(shí)a^2+b^2+c^2=3
所以
m=根號17/2根號3
a=-4根號3/根號17
b=-根號3/根號17
4a+b=-根號51
1、是求極值的,不是求最值的
2、如果要求最值,要把極值點(diǎn)的函數(shù)值和不可導(dǎo)點(diǎn)的函數(shù)值還有端點(diǎn)函數(shù)值進(jìn)行比較
3、書上說是可能的極值點(diǎn),這個(gè)沒錯(cuò),比如f(x)=x^3,在x=0點(diǎn)導(dǎo)數(shù)確實(shí)為0,但是不是極值點(diǎn),所以是可能的極值點(diǎn),到底是不是要帶入原函數(shù)再看
9. 拉格朗日中值法求極值
舉個(gè)最簡單的例子
f(x,y)=x+y subject to the constraint:2x+y^2 -5=0
define the lagrange function
L(x,y)=x+y+λ(2x+y-5)
partial derivertive:
d(L)/d(x)=1+2λ=0
d(L)/d(y)=1+λy=0
d(L)/d(λ)=2x+y-5=0
最底下著三個(gè)方程組是怎么的出來的
f(x,y)= C ln x1+d ln x2
P1X1+P2X2=M
解
L(x,y) 分別對x,y,λ 求偏導(dǎo)
L(x,y)=C ln x1+d ln x2+λ (P1X1+P2X2-M)
分別對x1,x2,λ 求偏導(dǎo)
d(L)/d(x1)=c/x1+λp1=0
d(L)/d(x1)=d/x2+λp2=0
d(L)/d(x1)=P1X1+P2X2-M=0