1. 構造拉格朗日插值多項式
拉格朗日插值公式(外文名Lagrange interpolation formula)指的是在節(jié)點上給出節(jié)點基函數(shù),然后做基函數(shù)的線性組合,組合系數(shù)為節(jié)點函數(shù)值的一種插值多項式。
線性插值也叫兩點插值,已知函數(shù)y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1
其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)。
線性插值計算方便、應用很廣,但由于它是用直線去代替曲線,因而一般要求[x0, x1]比較小,且f(x)在[x0, x1]上變化比較平穩(wěn),否則線性插值的誤差可能很大。為了克服這一缺點,有時用簡單的曲線去近似地代替復雜的曲線,最簡單的曲線是二次曲線,用二次曲線去逼近復雜曲線的情形。[1]
2. 構造三次拉格朗日插值多項式
在數(shù)值分析中,拉格朗日插值法是以法國十八世紀數(shù)學家約瑟夫·拉格朗日命名的一種多項式插值方法。
許多實際問題中都用函數(shù)來表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。
3. 構造拉格朗日插值多項式,并計算f(1.5)
線性插值也叫兩點插值,已知函數(shù)y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1 其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)
4. 拉格郎日插值多項式
拉格朗日插值是一種多項式插值方法。是利用最小次數(shù)的多項式來構建一條光滑的曲線,使曲線通過所有的已知點。
例如,已知如下3點的坐標:(x1,y1),(x2,y2),(x3,y3).那么結果是:y=y1 L1+y2 L2+y3 L3,L1=(x-x2)(x-x3)/((x1-x2)(x1-x3)),L2=(x-x1)(x-x3)/((x2-x1)(x2-x3)),L3=(x-x1)(x-x2)/((x3-x1)(x3-x2)).
5. 構造拉格朗日插值多項式f(x)=x3,要求
構造一組插值基函數(shù).”就是構造一個函數(shù),這個函數(shù)在其中一點的值為1,其它點的值為0。這樣的話把n個這樣的函數(shù)加權加起來得到的函數(shù)就是在每個點上的值都是需要的了
6. 拉格朗日型插值多項式
拉格朗日插值法與牛頓插值法都是二種常用的簡便的插值法。但牛頓法插值法則更為簡便,與拉格朗日插值多項式相比較,它不僅克服了“增加一個節(jié)點時整個計算工作必須重新開始”的缺點,而且可以節(jié)省乘、除法運算次數(shù)。
同時,在牛頓插值多項式中用到的差分與差商等概念,又與數(shù)值計算的其他方面有著密切的關系。所以??!
從運算的角度來說牛頓插值法精確度高從數(shù)學理論上來說的話,我傾向于拉格朗日大神!!
話說拉格朗日當初不搞天文,不搞物理,專弄數(shù)學,估計是數(shù)學歷史上最偉大的數(shù)學家了,沒有之一。
7. 拉格朗日插值多項式是怎樣構造的
拉格朗日插值公式
約瑟夫·拉格朗日發(fā)現(xiàn)的公式
拉格朗日插值公式線性插值也叫兩點插值,已知函數(shù)y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式P1(x) = ax + b使它滿足條件P1 (x0) = y0 P1 (x1) = y1其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)。