1. 歐拉和拉格朗日的區(qū)別
其實(shí)他們的區(qū)別僅僅是顏色版本上的不同而已,
前者采用的是白色的面板,后者采用的是黑色的面板,他們的內(nèi)置配置都是一模樣的,他們都承認(rèn)是高通驍龍870處理器,都支持5G雙模全網(wǎng)通功能。都累死了,4500毫安電池,支持65w的快速充電,都支持立體聲雙揚(yáng)聲器。
2. 拉格朗日描述和歐拉描述的區(qū)別
描述流體力學(xué)可以使用歐拉方法或是拉格朗日方法,各有優(yōu)缺點(diǎn)。
連續(xù)介質(zhì)假設(shè)是因?yàn)橐话愕牧黧w都可以看成是連續(xù)介質(zhì),連續(xù)介質(zhì)才能使得N_S方程成立。但是在稀薄空氣中,該假設(shè)無效,需要通過分子動力學(xué)計(jì)算。
3. 拉格朗日描述與歐拉描述的區(qū)別
拉格朗日定理存在于多個學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢的情況下,如果初始時刻某部分流體內(nèi)無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。以某一起始時刻每個質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個正整數(shù)的因數(shù)分解式中,沒有一個數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個平方數(shù)之和。
4. 拉格朗日和歐拉法的區(qū)別
拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。
有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。
上述問題可以通過消元來解決,例如消去x,則變成
z=(y-1)^2+y^2
則容易求解。
但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數(shù)法,過程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f對x的偏導(dǎo)=0
f對y的偏導(dǎo)=0
f對k的偏導(dǎo)=0
解上述三個方程,即可得到可讓z取到極小值的x,y值。
拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。
5. 拉格朗日描述和歐拉描述轉(zhuǎn)換
拉格朗日點(diǎn)是在天體力學(xué)中三體問題計(jì)算的5個解,也就是一個小天體在兩個大天體的引力作用下,在空間中的某個點(diǎn),小天體可以相對兩個大天體達(dá)到相對靜止。
這個點(diǎn)最初由瑞士數(shù)學(xué)家歐拉計(jì)算證明了3個解,也就是有三個點(diǎn)可以達(dá)到平衡。
后來法國數(shù)學(xué)家拉格朗日又推導(dǎo)證明了剩余的兩個解,最終一共證明了5個解都是可以達(dá)到平衡的。這就是拉格朗日點(diǎn)的原理。
6. 拉格朗日與歐拉法區(qū)別
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
7. 歐拉和拉格朗日的關(guān)系
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數(shù)的極值的方法。這種方法將一個有n 個變量與k 個約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個矢量的系數(shù)。
引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。