1. 如何證明拉格朗日公式
1拉格朗日公式
拉格朗日方程
對(duì)于完整系統(tǒng)用廣義坐標(biāo)表示的動(dòng)力方程,通常系指第二類(lèi)拉格朗日方程,是法國(guó)數(shù)學(xué)家J.-L.拉格朗日首先導(dǎo)出的。通??蓪?xiě)成:
式中T為系統(tǒng)用各廣義坐標(biāo)qj和各廣義速度q'j所表示的動(dòng)能;Qj為對(duì)應(yīng)于qj的廣義力;N(=3n-k)為這完整系統(tǒng)的自由度;n為系統(tǒng)的質(zhì)點(diǎn)數(shù);k為完整約束方程個(gè)數(shù)。
插值公式
線(xiàn)性插值也叫兩點(diǎn)插值,已知函數(shù)y = f(x)在給定互異點(diǎn)x0, x1上的值為y0= f(x0),y1= f(x1)線(xiàn)性插值就是構(gòu)造一個(gè)一次多項(xiàng)式
P1(x) = ax + b
使它滿(mǎn)足條件
P1(x0) = y0P1(x1) = y1
其幾何解釋就是一條直線(xiàn),通過(guò)已知點(diǎn)A (x0, y0),B(x1, y1)。
2. 拉格朗日的公式
線(xiàn)性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線(xiàn)性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿(mǎn)足條件:P1 (x0) = y0, P1 (x1) = y1
其幾何解釋就是一條直線(xiàn),通過(guò)已知點(diǎn)A (x0, y0),B(x1, y1)。
線(xiàn)性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線(xiàn)去代替曲線(xiàn),因而一般要求[x0, x1]比較小,且f(x)在[x0, x1]上變化比較平穩(wěn),否則線(xiàn)性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡(jiǎn)單的曲線(xiàn)去近似地代替復(fù)雜的曲線(xiàn),最簡(jiǎn)單的曲線(xiàn)是二次曲線(xiàn),用二次曲線(xiàn)去逼近復(fù)雜曲線(xiàn)的情形。
3. 拉格朗日公式的證明
對(duì)于無(wú)約束條件的函數(shù)求極值,主要利用導(dǎo)數(shù)求解法
例如求解函數(shù)f(x,y)=x3-4x2+2xy-y2+1的極值。步驟如下:
(1)求出f(x,y)的一階偏導(dǎo)函數(shù)f’x(x,y),f’y(x,y)。
f’x(x,y) = 3x2-8x+2y
f’y(x,y) = 2x-2y
(2)令f’x(x,y)=0,f’y(x,y)=0,解方程組。
3x2-8x+2y = 0
2x-2y = 0
得到解為(0,0),(2,2)。這兩個(gè)解是f(x,y)的極值點(diǎn)。
4. 拉格朗日公式是什么
拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱(chēng)隨體法,跟蹤法。
是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。
在研究波動(dòng)問(wèn)題時(shí),常用拉格朗日法
5. 如何用拉格朗日定理證明等式
由開(kāi)爾文定理可直接推論得到拉格朗日定理(Lagrange theorem),即漩渦不生不滅定理:
正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無(wú)渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無(wú)渦。反之,若初始時(shí)刻該部分流體有渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為有渦。
6. 利用拉格朗日公式證明不等式
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿(mǎn)足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
7. 拉格朗日定理公式
拉格朗日定理的意義如下:
1、拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情況和推廣,它是微分學(xué)應(yīng)用的橋梁,在理論和實(shí)際中具有極高的研究?jī)r(jià)值。
2、幾何意義: 若連續(xù)曲線(xiàn)在 兩點(diǎn)間的每一點(diǎn)處都有不垂直于x軸的切線(xiàn),則曲線(xiàn)在A,B間至少存在1點(diǎn) ,使得該曲線(xiàn)在P點(diǎn)的切線(xiàn)與割線(xiàn)AB平行。
3、運(yùn)動(dòng)學(xué)意義:對(duì)于曲線(xiàn)運(yùn)動(dòng)在任意一個(gè)運(yùn)動(dòng)過(guò)程中至少存在一個(gè)位置(或一個(gè)時(shí)刻)的瞬時(shí)速率等于這個(gè)過(guò)程中的平均速率。拉格朗日中值定理在柯西的微積分理論系統(tǒng)中占有重要的地位??衫美窭嗜罩兄刀ɡ韺?duì)洛必達(dá)法則進(jìn)行嚴(yán)格的證明,并研究泰勒公式的余項(xiàng)。從柯西起,微分中值定理就成為研究函數(shù)的重要工具和微分學(xué)的重要組成部分。
8. 拉格朗日公式證明不等式
拉格朗日插值公式
線(xiàn)性插值也叫兩點(diǎn)插值,已知函數(shù)y=f(x)在給定互異點(diǎn)x0,x1上的值為y0=f(x0),y1=f(x1)線(xiàn)性插值就是構(gòu)造一個(gè)一次多項(xiàng)式p1(x)=ax+b使它滿(mǎn)足條件p1(x0)=y0p1(x1)=y1其幾何解釋就是一條直線(xiàn),通過(guò)已知點(diǎn)a(x0,y0),b(x1,y1)。線(xiàn)性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線(xiàn)去代替曲線(xiàn),因而一般要求[x0,x1]比較小,且f(x)在[x0,x1]上變化比較平穩(wěn),否則線(xiàn)性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡(jiǎn)單的曲線(xiàn)去近似地代替復(fù)雜的曲線(xiàn),最簡(jiǎn)單的曲線(xiàn)是二次曲線(xiàn),用二次曲線(xiàn)去逼近復(fù)雜曲線(xiàn)的情形。
9. 拉格朗日證明方法
拉格朗日插值公式
線(xiàn)性插值也叫兩點(diǎn)插值,已知函數(shù)y=f(x)在給定互異點(diǎn)x0,x1上的值為y0=f(x0),y1=f(x1)線(xiàn)性插值就是構(gòu)造一個(gè)一次多項(xiàng)式p1(x)=ax+b使它滿(mǎn)足條件p1(x0)=y0p1(x1)=y1其幾何解釋就是一條直線(xiàn),通過(guò)已知點(diǎn)a(x0,y0),b(x1,y1)。線(xiàn)性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線(xiàn)去代替曲線(xiàn),因而一般要求[x0,x1]比較小,且f(x)在[x0,x1]上變化比較平穩(wěn),否則線(xiàn)性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡(jiǎn)單的曲線(xiàn)去近似地代替復(fù)雜的曲線(xiàn),最簡(jiǎn)單的曲線(xiàn)是二次曲線(xiàn),用二次曲線(xiàn)去逼近復(fù)雜曲線(xiàn)的情形。
10. 拉格朗日函數(shù)證明
拉格朗日點(diǎn)是三體意義下的一種平衡點(diǎn),在拉格朗日點(diǎn),第三體受到的另外兩個(gè)物體的引力合力為零。如果稍微偏離平衡點(diǎn),第三體就會(huì)受到一個(gè)大概指向拉格朗日點(diǎn)方向的合力,類(lèi)似于繞天體中心的萬(wàn)有引力。從而可以得到環(huán)繞拉格朗日點(diǎn)的暈軌道。