1. 用拉格朗日
這個定理是高數(shù)中比較基礎(chǔ)且比較難的問題。一般是證明題中運(yùn)用得比較多。比如說證明一個不等式。需要用到公式中的,切記這個是滿足區(qū)間中的任意數(shù),要正確理解任意的含義。 舉一個證明的列子,書上也出現(xiàn)過的。證明(b-a)/b<lnb-lna<(b-a)/a要正確證明這個題,要先構(gòu)造一個函數(shù)f(x)=lnx,然后運(yùn)用拉格朗日中值定理。
2. 用拉格朗日中值定理求極限
把首尾f(b)-f(a)/(b-a)算出來,然后對f(x)求導(dǎo),找到在a,b區(qū)間上和f(b)-f(a)/(b-a)的值即可定理表述如果函數(shù)滿足:
(1)在閉區(qū)間上連續(xù);
(2)在開區(qū)間內(nèi)可導(dǎo);那么在開區(qū)間內(nèi)至少有一點(diǎn)使等式成立。
其他形式設(shè)是閉區(qū)間內(nèi)一點(diǎn)為區(qū)間內(nèi)的另一點(diǎn),則定理在或在區(qū)間可表示為此式稱為有限增量公式。數(shù)學(xué)推導(dǎo)編輯輔助函數(shù)法:已知在上連續(xù),在開區(qū)間內(nèi)可導(dǎo),構(gòu)造輔助函數(shù)代入,,可得又因為在上連續(xù),在開區(qū)間內(nèi)可導(dǎo),所以根據(jù)羅爾定理可得必有一點(diǎn)使得由此可得變形得定理證畢。定理推廣編輯推論如果函數(shù)在區(qū)間上的導(dǎo)數(shù)恒為零,那么函數(shù)在區(qū)間上是一個常數(shù)。證明:在區(qū)間上任取兩點(diǎn)由拉格朗日中值定理得由于已知即因為是區(qū)間上的任意兩點(diǎn)所以在區(qū)間上的函數(shù)值總是相等的,即函數(shù)在區(qū)間內(nèi)是一個常數(shù)。推廣如果函數(shù)在開區(qū)間內(nèi)可導(dǎo)且與都存在令,則在開區(qū)間內(nèi)至少存在一點(diǎn)使得
3. 用拉格朗日中值定理證明柯西中值定理
一、地位不同: 1、柯西中值定理是拉格朗日中值定理的推廣, 2、拉格朗日中值定理是羅爾中值定理的推廣,同時也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)?! 《缀我饬x不同: 1、柯西中值定理幾何意義為,用參數(shù)方程表示的曲線上至少有一點(diǎn),它的切線平行于兩端點(diǎn)所在的弦。該定理可以視作在參數(shù)方程下拉格朗日中值定理的表達(dá)形式?! ?、拉格朗日中值定理是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的整體的平均變化率與區(qū)間內(nèi)某點(diǎn)的局部變化率的關(guān)系。
4. 用拉格朗日中值定理證明不等式
證明如下:如果函數(shù)f(x)在(a,b)上可導(dǎo),[a,b]上連續(xù),則必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意圖令f(x)為y,所以該公式可寫成△y=f'(x+θ△x)*△x (0
5. 用拉格朗日定理證明a-b/a
拉格朗日插值是一種多項式插值方法。是利用最小次數(shù)的多項式來構(gòu)建一條光滑的曲線,使曲線通過所有的已知點(diǎn)。
例如,已知如下3點(diǎn)的坐標(biāo):(x1,y1),(x2,y2),(x3,y3).那么結(jié)果是:y=y1 L1+y2 L2+y3 L3,L1=(x-x2)(x-x3)/((x1-x2)(x1-x3)),L2=(x-x1)(x-x3)/((x2-x1)(x2-x3)),L3=(x-x1)(x-x2)/((x3-x1)(x3-x2)).
6. 用拉格朗日證明不等式高中
位于拉格朗日點(diǎn)的物體相對于兩個天體靜止。
7. 用拉格朗日中值定理證明e^x>ex
由于X~B(n,p),含義為n次獨(dú)立事件,每次發(fā)生的概率為p. 所以:EX=8,DX=1.6,即np=8,np(1-p)=1.6, 可解得p=0.8,n=10,
8. 用拉格朗日中值定理證明a-b/a(a-b)^3=a3-3a2b+3ab2-b3即(a-b)^3=(a-b)(a2-2ab+b2)=a3-2a2b+ab2-a2b+2ab2-b3=a3-3a2b+3ab2-b3希望對你有幫助
9. 用拉格朗日定理證明當(dāng)x>1時,e^x>ex
羅爾定理可知。
fa=fb時,存在某點(diǎn)e,使f′e=0。
開始證明拉格朗日。
假設(shè)一函數(shù)fx。
目標(biāo):證明fb-fa=f′e(b-a),即拉格朗日。
假設(shè)fx來做成一個毫無意義的函數(shù),fx-(fb-fa)/(b-a)*x,我們也不知道他能干啥,是我們隨便寫的一個特殊函數(shù),我們令它等于Fx。
這個特殊函數(shù)在于,這個a和b,正好滿足Fb=Fa,且一定存在這個a和b。
此時就有羅爾定理的前提了。
于是得出有一個e,能讓F′e=0(羅爾定理)
即(fx-(fb-fa)/(b-a)*x)′,
上面求導(dǎo)等于f′x-(fb-fa)/(b-a)。
將唯一的x帶換成e,并且整個式子等于0。
變成f′e-(fb-fa)/(b-a)=0→
f′e=(fb-fa)/(b-a)→
f′e(b-a)=(fb-fa)。
擴(kuò)展資料
證明過程
證明:因為函數(shù) f(x) 在閉區(qū)間[a,b] 上連續(xù),所以存在最大值與最小值,分別用 M 和 m 表示,分兩種情況討論:
1. 若 M=m,則函數(shù) f(x) 在閉區(qū)間 [a,b] 上必為常函數(shù),結(jié)論顯然成立。
2. 若 M>m,則因為 f(a)=f(b) 使得最大值 M 與最小值 m 至少有一個在 (a,b) 內(nèi)某點(diǎn)ξ處取得,從而ξ是f(x)的極值點(diǎn),又條件 f(x) 在開區(qū)間 (a,b) 內(nèi)可導(dǎo)得,f(x) 在 ξ 處取得極值,由費(fèi)馬引理推知:f'(ξ)=0。
另證:若 M>m ,不妨設(shè)f(ξ)=M,ξ∈(a,b),由可導(dǎo)條件知,f'(ξ+)<=0,f'(ξ-)>=0,又由極限存在定理知左右極限均為 0,得證。
幾何意義
若連續(xù)曲線y=f(x) 在區(qū)間 [a,b] 上所對應(yīng)的弧段 AB,除端點(diǎn)外處處具有不垂直于 x 軸的切線,且在弧的兩個端點(diǎn) A,B 處的縱坐標(biāo)相等,則在弧 AB 上至少有一點(diǎn) C,使曲線在C點(diǎn)處的切線平行于 x 軸。
首先是式子進(jìn)行整理,整理成左邊是式子,右邊是零,其次是構(gòu)造函數(shù),構(gòu)造的這個函數(shù)的導(dǎo)數(shù)要等于原來的函數(shù),這便于用羅爾定理,其次是要找出能使用羅爾定理的最后一個條件,即兩個函數(shù)值相等,最后用羅爾定理證明必有一點(diǎn)導(dǎo)數(shù)值為零,即得證。
10. 用拉格朗日方程建立系統(tǒng)的運(yùn)動微分方程
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
11. 什么時候用羅爾定理,什么時候用拉格朗日
拉格朗日定理,數(shù)理科學(xué)術(shù)語,存在于多個學(xué)科領(lǐng)域中,分別為:微積分中的拉格朗日中值定理;數(shù)論中的四平方和定理;群論中的拉格朗日定理 (群論)。拉格朗日定理是群論的定理,利用陪集證明了子群的階一定是有限群G的階的約數(shù)值。
1.定理內(nèi)容
敘述:設(shè)H是有限群G的子群,則H的階整除G的階。
(a-b)^3=a3-3a2b+3ab2-b3即(a-b)^3=(a-b)(a2-2ab+b2)=a3-2a2b+ab2-a2b+2ab2-b3=a3-3a2b+3ab2-b3希望對你有幫助
9. 用拉格朗日定理證明當(dāng)x>1時,e^x>ex
羅爾定理可知。
fa=fb時,存在某點(diǎn)e,使f′e=0。
開始證明拉格朗日。
假設(shè)一函數(shù)fx。
目標(biāo):證明fb-fa=f′e(b-a),即拉格朗日。
假設(shè)fx來做成一個毫無意義的函數(shù),fx-(fb-fa)/(b-a)*x,我們也不知道他能干啥,是我們隨便寫的一個特殊函數(shù),我們令它等于Fx。
這個特殊函數(shù)在于,這個a和b,正好滿足Fb=Fa,且一定存在這個a和b。
此時就有羅爾定理的前提了。
于是得出有一個e,能讓F′e=0(羅爾定理)
即(fx-(fb-fa)/(b-a)*x)′,
上面求導(dǎo)等于f′x-(fb-fa)/(b-a)。
將唯一的x帶換成e,并且整個式子等于0。
變成f′e-(fb-fa)/(b-a)=0→
f′e=(fb-fa)/(b-a)→
f′e(b-a)=(fb-fa)。
擴(kuò)展資料
證明過程
證明:因為函數(shù) f(x) 在閉區(qū)間[a,b] 上連續(xù),所以存在最大值與最小值,分別用 M 和 m 表示,分兩種情況討論:
1. 若 M=m,則函數(shù) f(x) 在閉區(qū)間 [a,b] 上必為常函數(shù),結(jié)論顯然成立。
2. 若 M>m,則因為 f(a)=f(b) 使得最大值 M 與最小值 m 至少有一個在 (a,b) 內(nèi)某點(diǎn)ξ處取得,從而ξ是f(x)的極值點(diǎn),又條件 f(x) 在開區(qū)間 (a,b) 內(nèi)可導(dǎo)得,f(x) 在 ξ 處取得極值,由費(fèi)馬引理推知:f'(ξ)=0。
另證:若 M>m ,不妨設(shè)f(ξ)=M,ξ∈(a,b),由可導(dǎo)條件知,f'(ξ+)<=0,f'(ξ-)>=0,又由極限存在定理知左右極限均為 0,得證。
幾何意義
若連續(xù)曲線y=f(x) 在區(qū)間 [a,b] 上所對應(yīng)的弧段 AB,除端點(diǎn)外處處具有不垂直于 x 軸的切線,且在弧的兩個端點(diǎn) A,B 處的縱坐標(biāo)相等,則在弧 AB 上至少有一點(diǎn) C,使曲線在C點(diǎn)處的切線平行于 x 軸。
首先是式子進(jìn)行整理,整理成左邊是式子,右邊是零,其次是構(gòu)造函數(shù),構(gòu)造的這個函數(shù)的導(dǎo)數(shù)要等于原來的函數(shù),這便于用羅爾定理,其次是要找出能使用羅爾定理的最后一個條件,即兩個函數(shù)值相等,最后用羅爾定理證明必有一點(diǎn)導(dǎo)數(shù)值為零,即得證。
10. 用拉格朗日方程建立系統(tǒng)的運(yùn)動微分方程
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
11. 什么時候用羅爾定理,什么時候用拉格朗日
拉格朗日定理,數(shù)理科學(xué)術(shù)語,存在于多個學(xué)科領(lǐng)域中,分別為:微積分中的拉格朗日中值定理;數(shù)論中的四平方和定理;群論中的拉格朗日定理 (群論)。拉格朗日定理是群論的定理,利用陪集證明了子群的階一定是有限群G的階的約數(shù)值。
1.定理內(nèi)容
敘述:設(shè)H是有限群G的子群,則H的階整除G的階。