色欲香天天综合网站-狼狼综合久久久久综合网-丰满少妇人妻久久久久久-97夜夜澡人人爽人人模人人喊

返回首頁(yè)

拉格朗日與對(duì)偶(拉格朗日對(duì)偶函數(shù))

來(lái)源:www.cy2002.cn???時(shí)間:2023-01-26 08:18???點(diǎn)擊:139??編輯:admin 手機(jī)版

1. 拉格朗日對(duì)偶函數(shù)

拉格朗日乘數(shù)法是多元微分學(xué)中用來(lái)求函數(shù)z=f(x,y)在滿足g(x,y)=0條件下的極值問(wèn)題的方法:通過(guò)設(shè)F(x,y)=f(x,y)+λg(x,y),其中λ稱為拉格朗日乘數(shù),并求F(x,y)的極值點(diǎn)求得條件極值的方法

2. 拉格朗日關(guān)系

關(guān)于代數(shù)方程的求解,從16世紀(jì)前半葉起,已成為代數(shù)學(xué)的首要問(wèn)題,一般的三次和四次方程解法被意大利的幾位數(shù)學(xué)家解決.在以后的幾百年里,代數(shù)學(xué)家們主要致力于求解五次乃至更高次數(shù)的方程,但是一直沒(méi)有成功.對(duì)于方程論,拉格朗日比較系統(tǒng)地研究了方程根的性質(zhì)(1770),正確指出方程根的排列與置換理論是解代數(shù)方程的關(guān)鍵所在,從而實(shí)現(xiàn)了代數(shù)思維方式的轉(zhuǎn)變.盡管拉格朗日沒(méi)能徹底解決高次方程的求解問(wèn)題,但是他的思維方法卻給后人以啟示

3. 拉格朗日對(duì)偶問(wèn)題

拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱隨體法,跟蹤法。

是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。

在研究波動(dòng)問(wèn)題時(shí),常用拉格朗日法

4. 拉格朗日對(duì)偶規(guī)劃

羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過(guò)來(lái)拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。

泰勒中值定理是由柯西中值定理推出來(lái)的。泰勒中值定理在一階導(dǎo)數(shù)情形就是拉格朗日中值定理。

羅比達(dá)法則是柯西中值定理在求極限時(shí)應(yīng)用。

5. 拉格朗日對(duì)偶性

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得

顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

6. 拉格朗日對(duì)偶問(wèn)題舉例

設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點(diǎn),先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對(duì)x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即

L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,

L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,

φ(x,y)=0

由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點(diǎn)。

7. 拉格朗日對(duì)偶函數(shù) 凹函數(shù)

不是,是一種分式函數(shù),算初等函數(shù)。但是該內(nèi)容出現(xiàn)在數(shù)學(xué)分析中。

8. 拉格朗日對(duì)偶定理

拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。

正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無(wú)渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無(wú)渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒(méi)有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。

9. 對(duì)拉格朗日的認(rèn)識(shí)

拉格朗日中值定理又稱拉氏定理,是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的整體的平均變化率與區(qū)間內(nèi)某點(diǎn)的局部變化率的關(guān)系。

10. 拉格朗日對(duì)偶問(wèn)題與原問(wèn)題轉(zhuǎn)換

拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。

正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無(wú)渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無(wú)渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒(méi)有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
精品久久人人妻人人做精品| 亚洲精品国产精品乱码不卡√| 久久久无码人妻精品一区| 亚洲av无码一区二区三区人| 国产精品免费久久久久软件| 我的公把我弄高潮了视频| 无码一区二区三区亚洲人妻| 欧美精品久久天天躁| 亚洲永久精品ww47| 久久欧美一区二区三区性生奴| 亚洲深深色噜噜狠狠爱网站| 欧美乱妇高清无乱码在线观看| 中文字幕aⅴ人妻一区二区| 少妇高潮惨叫久久久久电影69| 久久精品国产亚洲av麻豆图片| 国产免费av片在线播放唯爱网| 国产精品刮毛| 老熟女高潮喷水了| 国产裸体歌舞一区二区| 97精品人妻系列无码人妻| 国产午夜无码视频在线观看| 亚洲av无码一区二区乱孑伦as| 巨胸喷奶水www视频网站| 久9re热视频这里只有精品| 无码专区久久综合久中文字幕| 欧美午夜理伦三级在线观看| 亚洲精品一区三区三区在线观看| 亚洲欧美日本韩国| 国模无码一区二区三区| 国产精品va在线播放| 国产成人无码18禁午夜福利p| 国产无套粉嫩白浆在线| 波多野结衣系列18部无码观看a| а√在线中文网新版地址在线| 亚洲国产av无码专区亚洲av| 激情内射亚州一区二区三区爱妻| 小蜜被两老头吸奶头在线观看| 成人综合伊人五月婷久久| 色狠狠色狠狠综合天天| 成 人 在 线 免费观看| 国产对白国语对白|