色欲香天天综合网站-狼狼综合久久久久综合网-丰满少妇人妻久久久久久-97夜夜澡人人爽人人模人人喊

返回首頁(yè)

拉格朗日插值法例題(拉格朗日插值法例題視頻)

來(lái)源:www.cy2002.cn???時(shí)間:2023-01-07 14:31???點(diǎn)擊:75??編輯:admin 手機(jī)版

1. 拉格朗日插值法例題視頻

在數(shù)值分析中,拉格朗日插值法是以法國(guó)十八世紀(jì)數(shù)學(xué)家約瑟夫·拉格朗日命名的一種多項(xiàng)式插值方法。

許多實(shí)際問(wèn)題中都用函數(shù)來(lái)表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過(guò)實(shí)驗(yàn)和觀測(cè)來(lái)了解。如對(duì)實(shí)踐中的某個(gè)物理量進(jìn)行觀測(cè),在若干個(gè)不同的地方得到相應(yīng)的觀測(cè)值,拉格朗日插值法可以找到一個(gè)多項(xiàng)式,其恰好在各個(gè)觀測(cè)的點(diǎn)取到觀測(cè)到的值。

2. 拉格朗日插值例子

構(gòu)造一組插值基函數(shù).”就是構(gòu)造一個(gè)函數(shù),這個(gè)函數(shù)在其中一點(diǎn)的值為1,其它點(diǎn)的值為0。這樣的話把n個(gè)這樣的函數(shù)加權(quán)加起來(lái)得到的函數(shù)就是在每個(gè)點(diǎn)上的值都是需要的了

3. 拉格朗日插值法原理

構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)

對(duì)函數(shù)求偏導(dǎo)并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時(shí)a^2+b^2+c^2=3

所以

m=根號(hào)17/2根號(hào)3

a=-4根號(hào)3/根號(hào)17

b=-根號(hào)3/根號(hào)17

4a+b=-根號(hào)51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點(diǎn)的函數(shù)值和不可導(dǎo)點(diǎn)的函數(shù)值還有端點(diǎn)函數(shù)值進(jìn)行比較

3、書上說(shuō)是可能的極值點(diǎn),這個(gè)沒(méi)錯(cuò),比如f(x)=x^3,在x=0點(diǎn)導(dǎo)數(shù)確實(shí)為0,但是不是極值點(diǎn),所以是可能的極值點(diǎn),到底是不是要帶入原函數(shù)再看

4. 拉格朗日插值法程序設(shè)計(jì)流程圖

拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的 多元函數(shù)的 極值的方法。

這種方法將一個(gè)有n 個(gè)變量與k 個(gè) 約束條件的最優(yōu)化問(wèn)題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問(wèn)題,其變量不受任何約束。

這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。

此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

5. 利用拉格朗日插值法

線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1 其幾何解釋就是一條直線,通過(guò)已知點(diǎn)A (x0, y0),B(x1, y1)

6. 拉格朗日插值法實(shí)際應(yīng)用

拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來(lái)解決有約束極值的一種方法。

有約束極值:舉例說(shuō)明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問(wèn)題就叫做有約束極值問(wèn)題。

上述問(wèn)題可以通過(guò)消元來(lái)解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時(shí)消元將會(huì)很繁,則須用拉格朗日乘數(shù)法,過(guò)程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對(duì)x的偏導(dǎo)=0

f對(duì)y的偏導(dǎo)=0

f對(duì)k的偏導(dǎo)=0

解上述三個(gè)方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡(jiǎn)單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。

7. 拉格朗日插值算法流程圖

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得

顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

8. 拉格朗日插值法算法

一、拉格朗日插值法

是以法國(guó)十八世紀(jì)數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名的一種多項(xiàng)式插值方法。許多實(shí)際問(wèn)題中都用函數(shù)來(lái)表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過(guò)實(shí)驗(yàn)和觀測(cè)來(lái)了解。如對(duì)實(shí)踐中的某個(gè)物理量進(jìn)行觀測(cè),在若干個(gè)不同的地方得到相應(yīng)的觀測(cè)值,拉格朗日插值法可以找到一個(gè)多項(xiàng)式,其恰好在各個(gè)觀測(cè)的點(diǎn)取到觀測(cè)到的值。這樣的多項(xiàng)式稱為拉格朗日(插值)多項(xiàng)式。

二、Lagrange基本公式:

拉格朗日插值公式,設(shè),y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式計(jì)算時(shí),其x取值可以不等間隔。由于y=f(x)所描述的曲線通過(guò)所有取值點(diǎn),因此,對(duì)有噪聲的數(shù)據(jù),此方法不可取。

一般來(lái)說(shuō),對(duì)于次數(shù)較高的插值多項(xiàng)式,在插值區(qū)間的中間,插值多項(xiàng)式能較好地逼近函數(shù)y=f(x),但在遠(yuǎn)離中間部分時(shí),插值多項(xiàng)式與y=f(x)的差異就比較大,越靠近端點(diǎn),其逼近效果就越差。

三、C++實(shí)現(xiàn)

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作為臨時(shí)變量,記錄拉格朗日插值多項(xiàng)式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
亚洲成av人片不卡无码| 亚洲一线二线三线写真| 亚洲av日韩av永久无码绿巨人| 99久久精品免费看国产| 亚洲av成人片色在线观看吉沢| 中文成人无字幕乱码精品区| 欧美日韩久久久精品a片| 国产成人+亚洲欧洲+综合| 国产精品igao视频网| 中文字幕日韩精品有码视频| 亚洲国产精品第一区二区三区| 又粗又猛又黄又爽无遮挡| 久久久久久久久无码精品亚洲日韩| 久久亚洲精品ab无码播放| 国产无套内射又大又猛又粗又爽| 欧美性大战久久久久久久| 毛片无码一区二区三区a片视频| 成人做爰免费视频免费看| 亚洲av无码国产综合专区| 吃奶揉捏奶头高潮视频在线观看| 国产播放隔着超薄丝袜进入| 性一交一乱一乱一视频| 广东少妇大战黑人34厘米视频| 亚洲亚洲人成综合网络| 久久久久人妻一区精品色欧美| 国产av精国产传媒| 中文无码日韩欧免费视频| 久久99青青精品免费观看| 国产av无码专区亚洲av桃花庵| 人体内射精一区二区三区| 精品一区二区三区在线视频| 香蕉久久久久久久av网站| 久久国产乱子伦精品免费女人| 亚洲精品午夜一区人人爽| 日本乱人伦在线观看| 天干夜天干天天天爽视频| 亚洲av无码国产在丝袜线观看| 六十路高龄老熟女m| 久久棈精品久久久久久噜噜| 亚洲av久久久噜噜噜熟女软件| 精品人妻少妇一区二区三区|